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MODELING OF GENERAL SURFACE JUNCTIONS OF COMPOSITE OBJECTS
IN AN SIE/MoM FORMULATION

Joon Shin, Allen W. Glisson, and Ahmed A. Kishk

Department of Electrical Engineering
University of Mississippi, University, MS 38677

ABSTRACT This paper discusses the modeling of various kinds of surface junctions in an
SIE/MoM (Surface Integral Equation / Method of Moments) formulation applied to complex
objects consisting of arbitrarily shaped conducting and dielectric bodies. Methods of describ-
ing various types of junctions and systematically incorporating them in numerical solutions are
presented. The procedures are of interest for the specific application of arbitrarily shaped di-
electric resonator antennas and their associated feed structures and packaging. An E-PMCHW
formulation in conjunction with a moment method procedure using generalized triangular basis
functionsis presented to deal with such general junctions.

I. INTRODUCTION

The modeling of general surface junctions in an SIE/MoM formulation is considered in this
work. The specific application leading to this study is that of a dielectric resonator (DR) antenna.
Since an experimental study of a cylindrical dielectric resonator (DR) antenna was reported in
1983 [1], this antenrna has drawn continued interest because of its small size, efficiency, and
potential ability to perform multiple antenna tasks via simple mode coupling mechanisms. The
configuration of a DR antenna may range from a very simple one which allows analytic solutions
to a very complex one. A typical structure for a DR antenna is 2 DR element of high dielectric
constant excited by a single feed such as a microstripline or coaxial cable. Various shapes and
combinations of DR elements as well as various feed structures have been suggested, however,
which may improve the antenna performance in the areas of bandwidth, power handling, and
antenna efficiency.

Rigorous SIE analysis methods for non-trivial DR antenna configurations have been available
mainly for body of revolution (BOR) objects [2,3]. This work results from an interest in the
analysis of DR antennas of more arbitrary configurations, which may include general 3D objects
conprising an arbitrary combination of conducting and/or dielectric bodies of arbitrary shapes,
using an SIE/MoM method with triangular patch basis functions. The junction modeling problem
has been considered in previous works for conducting surfaces [4], for dielectric surfaces [5], simple
combinations of both for BOR objects [2,3,6,7), and for a general case of conducting, dielectric,
resistive, and impedance boundary condition surfaces [8]. This work attempts to provide a
formalism for systematically describing junction models for a wide variety of junction types.

I1I. FORMULATION

A. Problem Description
The geometry under consideration is a general inhomogeneous body with Ng dielectric regions,
“each of which may contain conducting bodies as well as impressed sources as shown in Fig. 1.
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Ry may occupy any parts of the space. Infinitely thin conducting bodies can reside in any region,
at interfaces between regions, or they may penetrate from one region to another. All conductors

e considered to be PEC (Perfect Electric Conductor) material. One of the regions, region R,
1l Fig. 1, may be of infinite extent. The total fields in each region are denoted by E; and H;,
where ¢ = 0,1,2,.. -y Ng, for electric and magnetic fields, respectively, and i = 0 denotes PEC
regions with Ey=H,=0. The time variation, e/, is assumed and suppressed throughout.

Any two adjacent regions, R; and R;, are separated by a surface denoted by Sii(ts, 2, f), where
i, is the type of the surface, and ¢ and f are the ‘to-region’ and the ‘from-region’ of the surface,

a dielectric region forms yet another type of surface with the ‘from-region’ being the same as the
‘to-region. Thus, as shown in Fig. 1, there are four types of surfaces specified by t, —

« Type-0 (¢,=0, pf0) ; interface between a conducting body and a dielectric region,

» Type-1 (t,=1, pfl) ; infinitely thin conducting body within a dielectric region,

« Type-2 (t,=2, pf2) ; infinitely thin conducting body between two dielectric regions, and

» Type-3 (t,=3, df) ; dielectric interface between two dielectric regions.

When more than two surfaces meet at a curved line segment, they form a junction. Depending ‘
on the numbers and types of the surfaces at 2 junction, there are a variety of possible junction i
types, all of which are considered in this study. :

Each region R; is surrounded by a closed surface Sf and is associated with an inward normal
unit vector fi;. The surface interface between regions R; and R;, if one exists, is denoted as Sij
foranyiandj, i=1,...,Ng, j= 0,1,..., Np. Thus, SC is the set of all interface surfaces
Sij, where j represents all region numbers that interface with region A;. Note that S;; = S;; for
J # 0; however, the normal unit vectors 1; and 1i; are in opposite directions to each other on S;;.

pi0 (t,=0)
pfl (t,=1)
P2 (,=2)
df (t,=3)

—
. j s \‘
. j \ /\/Sn
i1 1 J R; ! f i
1 i\ 2 T S 1
\ '~ [} - 1 N
\ /7~i _________ ..1’ Sjl //VM{ a

1
/ By, _ 3 By (u1,6)
S Aemm=" (B, Hy)

Fig. 1. General geometry under consideration.
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B. The Field Equivalences

According to the equivalence principle [9], the original problem can be decomposed into Np
auxiliary problems, one for each dielectric region. To obtain the auxiliary problem for region R;,
the impressed sources of the original problem are retained only in region R; and the boundaries
of the region are replaced by equivalent surface currents radiating in a homogeneous medium
with the constitutive parameters of region Rj. Electric currents are used for the conducting
surfaces, while electric and magnetic currents are used for the dielectric boundaries. The electric
and magnetic currents appearing on opposite sides of a dielectric interface in different auxiliary
problems are taken equal in magnitude and opposite in direction to assure the continuity of the
tangential components on these boundaries as they are continuous in the original problem. In
this procedure, the fields produced within the region boundaries by the equivalent currents and
the impressed sources in region R; must be the same as those in the original problem, while the
zero field is produced outside these boundaries. The electric and magnetic currents along Sf are
J;=#; x H; and M; = B; x fi;, respectively.

A system of surface integro-differential equations can be obtained by enforcing the boundary
conditions of continuity of the tangential components of electric field on the conducting surfaces
and both electric and magnetic fields on the dielectric surfaces. This results in the EEPMCHW
formulation [6] when there is no junction in the problem. For problems having general junctions,
however, it is not easy to express the integral equation system explicitly apart from the testing
procedure. Thus the system of integral equations is presented in the next section after describing
the junction modeling and the basis functions.

C. Modeling of Junctions in the Moment Method Solution

Arbitrarily shaped surfaces are discretized in triangular patches and the equivalent surface
currents are appraximated by expansions in the RWG basis functions on the patches, which are

expressed as [10]

NTJ-
3(x) 2 Y. LB (x; 54, 5%.) 1)
n=1
where,
T; _ + pi / hE TeE Sd:'
By (r) = { 0, e otherwise, (2)

Nr, is the number of electric basis functions, and S§ are the positive/negative domains or the
from-/to- faces of the basis function, respectively. For magnetic currents, {Bf"}fg{‘ can be
defined similarly. The testing functions T’ and T2~ are also taken to be the same as (2). With
the basis and testing functions defined we have a matrix equation

R o

When there are general surface junctions, the current related to an unknown coefficient may
exist on many different surfaces. In such cases, the expression (1) is not rigorous enough. For
example, there is an electric current on a dielectric surface in the region R; equivalent problem
and another one flowing in the opposite direction in the region R; problem, represented by ‘— I’
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as shown in Fig. 2(a). The expression in (1) for the electric currents has this sort of implication
for the basis functions BY when the domain of the unknown involves a dielectric interface. When
more than two dielectric surfaces meet at a junction, this scheme does not work. Thus for general
junctions, we seek another way of expressing the generalized current more rigorously. We will
use two different basis functions for the same unknown coefficient related to a dielectric surface
as shown in Fig. 2(b). In other words, the unknown coefficient has a multiplicity of two when it
represents the electric or magnetic current on the dielectric face. Extending this to the general
case, the generalized current is defined in terms of the generalized basis functions as

N N
Cr)={I(@), M)} = {3 LBa(r), > LB} 4
n=1 n=1+NTj
where,
B,(r) =BP (1), B,,(r)=BJ(r), ma=n, withk=n, if n<Ng (5)
Bn(l‘) = Bg"“(l‘), an(r) = Bﬁ‘(r)» Tw=Ti, Withk=n-— NTj’ if n> NTE (6)
N = N13 + Nr,,
Tk
BY(r) = 3 By (5 ffusthus R (7)
v=1
Tk
Bi*() = 3 BY (% ffeth, Br) (8)
7=l
B,, = the v* basis function of I,, v=1,...,7,
BE, Bf» = RWG basis function defined over the corresponding patches as in (2)
7, = multiplicity of the unknown coefficient, I, = { :z:’ 1, Zg}" =y
ny = total number of faces (surfaces) connected to the junction for In
ngm = number of dielectric faces (surfaces) related to I,
ffanstfa, = from-face and to-face of B,,.

R,, = regionof By, .

B -L3(fufaR) B LIuafuR)
-t~ - %
= 5ee I NN
fi-- /\. ~f fi-- ~fo
R; L3.(f1, for BS) R; L35, (f1, f2, i)
(a) Conventional representation (b) New representation

Fig. 2. Two methods of representing basis functions.
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Notice that there is one-to-one correspondence between Bﬁ or Bﬁ' and the parameter set
{ffassitfrsFn,}. The numbers of unknowns and basis functions for a given junction or edge
are determined from the types and numbers of the faces connected to the junction by considering
proper boundary conditions at the junction. The methods of determining them and systematical-
ly incorporating them in the MoM solutions have been developed. Examples of modeling general
junctions are shown in Fig. 3, where J, and M, are used instead of By and BT~ respective-
ly. The generalized testing functions {Tﬁ}:ﬁl, {T,T"'-}ﬁ’;i, and {T,}_, are also defined in a
similar manner. We also define C;, the generalized current for the region R; equivalent problem,
as

Ci(r) = {Ji(r), Mi(r)} 9)
where

Nz T

Ji(r) = Z InzsiiBm(r; Jfaurtlan an) (10)
n=1 =
N Tn

Mi(r) = g; 1I,zzzlzs,i,iBn,(r;ffn,,,tfm,Rn,,) (11)
N n=Ng;+ v=

85, = source contribution coefficient = { (1), fi’ﬁ = .R;

With the set of basis functions in (4-8), one may apply the boundary conditions of tangential
field continuity at each sub-domain of the basis functions. By merely applying the boundary
conditions, however, the total number of equations may be greater than the number of the
unknowns because of the multiplicity of some unknowns related to junctions. The usual methods
of solving equations apply only when the number of equations equals to the number of unknowns,
N. Such a set of N equations can be obtained by taking the n'* integral equation as the set
of simultaneous integral equations (or summation of them) which satisfy the proper boundary
conditions on the subdomains of the basis functions (Bq,,v =1, «eyTn) Telated to the unknown
coefficient, I,,. Tt is possible to get such a surface integral equation system by testing with the
generalized testing functions as follows

Np

TN ES(Ch)ltam g" 5 T, )

i=1

Ne . Tm
-5 (Blans Y05 T, ), m=12,..,Nr;  (12)
=1 u=1

Np . Tm
"Z( g; X H}v Zari:a.i T, )r
u=1

i=1

Nr T
3 (1 x H{(Cy), 215:;.4 To., )

i=1
m= Ng, +1,..,Nr; + Nr,,, (13)
where,
(fg) = [feds
F _ . . . — 11 Rl = R"Ho
O, = field contribution coefficient = { 0, otherwise

R, = region of the testing function, Tm,,
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fz Ca, Iz fa fs.\Cz’Jlﬂ fa

i,y D @ /C, T,
\\\ I,l

~ ’ CS; Mlx
\./
I, \\
C7, Mls l, \\
Cs, s Carig ,'%\Ah\
f1 fi i’ CyJdu "h

(a) Al faces are pfl (my=rnyp=4).  (b) All faces are df (nyy= ng=4).

(c) A general case (ni;=13,n,50=4, pp1 =5, npp2=1, ngr =3).

Fig. 3. Modeling of general surface junctions. (C;,i = 1,2,3, ..., is an entry-counting index.)
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(a) b)
Fig. 4. A test case. (a) PEC alone (b) with phantom dielectric.

and (Ef, Hf) and (El HI) are the scattered fields due to C; and incident fields, respective-

13

ly. Equations (12) and (13) are the E-PMCHW formulation [6] extended to general junctions.
Substituting C; into (12) and (13), the impedance matrix and excitation vector elements in (3),

755 and v , for example, are expressed as

Ng Tn Tm
an:’f; = Z ( [Ef(zl J,SM-B,,'(r'; Ffres tfﬂv’Rﬁv))]taﬂ? thsf;.sBm (z; ffm.:tfﬂh’Rm-) )
=1 = u=
n=1,.., NTJ. and m= 1, —eey Nq’; (14)

Nr . T
VB = =3 (Elian, 3 6B sty Bn) ), m =1, Ny (19)
i=1 u=1

Some subroutines of EMPACK [11] have been used for the integrations over the triangular do-
mains which appear in (14) implicitly.

I1I. NUMERICAL RESULTS

A T-shape junction of three 0.1-m wide and 0.3-m long PEC strips is taken as an example. For
comparison a semi-circular cylinder of phantom dielectric having 0.1-m height and 0.3-m radius
is attached to the T-shape junction as shown in Fig. 4. The z-directed surface currents along
the contour lines, (~0.3,0,0)—(0.3,0,0) and (0,0, 0)— (0, —0.3,0), located at the center of each
strip are computed for a plane wave excitation. The plane wave is expressed as Ef= E, ¢%F ™,
where, ké =2 cos ¢ sin §* — §sin ¢’ sin ¢ — Z cos §, E,= E}(% cos  cos ¢* +§ cos ¢ sin ' — 2sin 8°),
§ = ¢ =45°, By =1, ko=27f/Bots, and f =300 MHz. The results in Fig. 5 show very good
agreement as well as the expected singularities at the end of the strips.

IV. CONCLUSION

A systematic procedure for modeling of the general junctions of any combination of conducting
and/or dielectric bodies in an SIE/MoM formulation has been presented. With the successful
modeling of general junctions, it is possible to apply the E-PMCHW formulation to a large class
of problems including dielectric resonator antennas of complex configuration.
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Fig. 5. z-directed current densities along the contours (o ; PEC alone, x; with phantom dielectric). The
arrows denote the start of the second contour.
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